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The R-ketoglutarate-dependent dioxygenases represent a large
and functionally diverse family of enzymes that catalyze many
reactions with environmental, pharmacological, and medical im-
portance. For example, these enzymes catalyze steps in the bio-
synthesis of antibiotics and collagen, degradation of xenobiotics,
repair of alkylated DNA, and cellular sensing of oxygen and re-
sponse to hypoxia.1,2 These enzymes couple the reductive activation
of dioxygen to the hydroxylation of their substrates and the decar-
boxylation of the cosubstrate,R-ketoglutarate (RKG3), to succi-
nate.2,4 In each member of the family, the reaction is carried out at
a mononuclear non-heme Fe center, which is facially coordinated
by a conserved His2Asp/Glu motif from the protein. The mechanism
is also thought to be conserved and is shown below in Scheme 1,
adapted for the subject of this study,Escherichia colitaurine:RKG
dioxygenase (TauD). Key features of this mechanism are (1)
addition of oxygen to the square pyramidal Fe(II) center of the
quaternary TauD:Fe(II):RKG:taurine complex to yieldI , (2) attack
of the uncoordinated O-atom of the O2-moiety on C2 ofRKG to
form the bicyclic speciesII , (3) cleavage of the O-O bond and
decarboxylation resulting in the Fe(IV)dO2- speciesIII , (4) ab-
straction of an H-atom from the substrate to yieldIV , (5) hydrox-
ylation via oxygen rebound, and (6) dissociation of the products
and re-binding of substrate and cosubstrate. We recently detected
an intermediate in the TauD reaction following mixing of the quat-
ernary complex with O2 and showed that it contains formally an
Fe(IV) center in the high-spin configuration.5 We then demonstrated
that decay of the intermediate exhibits a large kinetic isotope effect

upon substitution of the H-atoms bonded to C1 with deuteria (kH/
kD ≈ 35). This observation suggests an Fe(IV)dO2- assignment
for the intermediate, because this species is proposed to activate
the C-H/D bond of taurine.6 The detection by Hausinger and
coworkers of an O-isotope sensitive band (821 cm-1 for 16O and
787 cm-1 for 18O) using continuous-flow resonance Raman spec-
troscopy is consistent with this assignment.7 In this work, we have
characterized this intermediate by rapid freeze-quench X-ray
absorption spectroscopy. We detect a short, 1.62 Å Fe-O interac-
tion, which is present in the spectra of samples containing large
amounts of the intermediate but not in the spectra of samples that
were prepared with rigorous exclusion of oxygen. This result
corroborates the hypothesis that the intermediate contains an Fed

O structural motif.
Samples containing large amounts of the intermediate,1, were

prepared as previously described, but with minor modifications.8

Mössbauer spectra reveal that 79( 3% of the total Fe in these
samples is in form of the Fe(IV)-intermediate (see Figure S1). The
Mössbauer spectrum of the anaerobic control sample,2, shows that
it does not contain the intermediate. Figure 1 shows the XANES
spectrum of2 (thin line) and of1 (bold line). The edge of1 is sub-
stantially higher in energy than that of2, indicating that the Fe of
the intermediate is more oxidized than the Fe(II) present in the
starting complex. Although the edge energy can be indicative of
the oxidation state of the absorber, an assignment of oxidation num-
ber from XAS alone is complicated in this case by several factors.9

First, the intermediate gives rise to the largest isomer shift (δ )
0.31 mm/s) reported for relevant Fe(IV) complexes, suggesting that
its Fe center may have substantial Fe(III) character. Also, the sample
contains 21% Fe(II) initially, and partial photoreduction of the
intermediate was demonstrated by Mo¨ssbauer characterization of
the sample after X-ray exposure. Any or all of these complications
may skew the edge toward lower energy. Nevertheless, the edge
energy (7123 eV, defined as the inflection point of the rising edge)
and, more importantly, its general shape are consistent with other
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Scheme 1 . Proposed Mechanism for Oxygen Activation by TauDa

a SpeciesI-IV are proposed reaction intermediates, and the structures
shown forI , II , andIII are only one of several possible resonance structures.

Figure 1. X-ray absorption spectra (Fe K-edge) of1 (bold line) and2
(thin line). The inset shows a magnification of the preedge feature.
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examples in the literature of Fe(IV) complexes and protein
intermediates.10,11

The inset of Figure 1 shows a closeup of the feature arising from
the 1s-3d transition.12 The increased intensity in sample1 is
indicative of a less centrosymmetric environment and may be caused
by the presence of a short Fe-O bond. Although the edges of Fe-
(IV)dO complexes reported in the literature lack the very intense
preedge features characteristic of other MdO complexes (M) Mo,
V, Cr),13,14in all cases, the preedge feature is still sharper and larger
in area than the corresponding control samples of lower oxidation
state.10,11,15

By far the most compelling evidence for the presence of a short
Fe-O bond in the formally Fe(IV) intermediate is the fitting
analysis of the EXAFS oscillations. Fits to the Fourier-filtered first-
shell data and unfiltered data require a short, 1.62( 0.01 Å Fe-O
interaction to best model the data (Figure 2, right panel and Tables
S1 and S3). A two-shell fit (1.62 and 2.05 Å, fitC) is significantly
better than either a one-shell fit (2.05 Å, fitA) or a two-shell fit
with two long Fe-O interactions (2.06 and 2.42 Å, fitB). The
quality of the fit is further enhanced by using a three-shell model
(1.62, 2.05, and 2.42 Å, fitD). Furthermore, if the coordination
number of the short Fe-O interaction is systematically varied in
0.1 increments, the optimal coordination number ranges from 0.5
to 0.9 in the different samples examined. These optimal coordination
numbers, albeit rather uncertain, are consistent with the sample
composition determined by Mo¨ssbauer spectroscopy. In contrast,
fits to the data for the control sample are not improved by adding
a short Fe-O interaction. If a short interaction is included, the
Debye-Waller factor refines to a large and unreasonable value (σ2

) 0.01 Å2 for the control vs 0.002 Å2 for the intermediate). Figure
2 (left panel) shows the FT of data for1 and2.16 The short Fe-O
interaction is not apparent as a resolved peak in the FT, but a shift
of the overall first-shell peak to lower distance relative to the control
is apparent. In the several Fe(IV)dO2- protein and model com-
plexes that have been examined by XAS, the short Fe-O interaction
that is apparent in the fitting analysis has never been obvious from
a visual inspection of the FT.11,15,17

In conclusion, the EXAFS data presented in this study clearly
demonstrate the presence of a 1.62 Å interaction between the Fe
center of the high-valent TauD intermediate and one of its ligands.
This structural feature is consistent only with an FedO unit, thus
providing the most compelling evidence for the assignment of the
intermediate as an Fe(IV)dO2- species (III ). The XANES spectra
and the high Mo¨ssbauer isomer shift indicate, however, that the
oxidation state of the Fe in this intermediate may be between+III

and +IV. Ongoing experimental and computational studies will
address this intriguing possibility.
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Figure 2. Left panel: FT of the Fe K-edge EXAFS data [k3ø(k)] for 1
(bold line) and2 (thin line). FT range: 1-13 Å. Right panel: Fourier-
filtered EXAFS spectra [k3ø(k)] of 1 (bold line) and fitsA, B, C, andD
(top to bottom, thin lines, see Table S1 for fit parameters).A: one shell at
2.05 Å; B: two shells at 2.06 and 2.42 Å,C: two shells at 1.62 and 2.05
Å, andD: three shells at 1.62, 2.05, and 2.42 Å.
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